Financial benefits from the implementation of nature-based solutions in the settlements – a case study On a catchment of Lake Velence

> Attila Kálmán – kalman.attila@sze.hu Katalin Bene PhD – benekati@sze.hu

National Laboratory for Water Science and Water Security, Széchenyi István University, Department of Transport Infrastructure and Water Resources Engineering, Hungary

EGU23 - General Assembly

Section: BG 3.8 Abstract: EGU23-9476

PICO 3b.2 presentation

Changing landscape, land use

EGU23 - General Assembly, Section: BG 3.8, PICO 3b.2, Abstract: EGU23-9476

Benefiting from climate change

Climate and demography

Costs, benefits, opportunities

1 pond + 1 hectare = + 20% GDP (worth it?)

Thank you for your attention!

The research presented in this PICO presentation was carried out within the framework of the Széchenyi Plan Plus program with the support of the RRF 2.3.1 21 2022 00008 project.

EGU23 - General Assembly, Section: BG 3.8, PICO 3b.2, Abstract: EGU23-9476

Site description – catchment

Catchment: ~ 600 km² 3 sub-catchments (% is based on rainwater) Császár-creek (North/West) ~ 60% Southern flatland (South) ~ 20% Vereb-creek (North-East) ~ 20% Lake surface area: ~ 25 km² Average depth: 150 cm Water volume: 37.5 x 10⁶ m³

250,000 m³ water \approx 1 cm of lake water level

EGU23 - General Assembly, Section: BG 3.8, PICO 3b.2, Abstract: EGU23-9476

Site description – climate and demography

Rapid population growth increasing water demand

infrastructure development landscape change Changing land use needs local water shortage

< 500

600 - 650

650 - 700

700 - 750

800 - 850

(for years 1986-2021) min.: 295 mm, max.: 973 mm. avr.: 542 mm (with 135 mm st.dev.)

Climate prediction: evaporation + 8% by 2050 (compared to avr. 2000-2020) Result: additional 7 cm water level loss from the lake annually

EGU23 - General Assembly, Section: BG 3.8, PICO 3b.2, Abstract: EGU23-9476

Nature-based solutions

Population growth

- > grey infrastructures spread
- > decrease of green areas.
- Result: risk of flash floods increases drought problems rise deterioration of human living space decreasing ecosystems

Negative to natural and social environment.

Grey infrastructures cannot sufficiently fulfill in the changing conditions (e.g., flash floods, heat island effect). Nature-based solutions are sustainable and can provide appropriate, resilient response.

Aim:

Drought protection / watering plants Flood protection / reduce downstream flows Improvement of water quality

Source: nwrm.eu

Retention (wet) pondStore runoffFlood risk reductionFiltration of pollutantsWater storagePrevent surface water status deteriorationPrevention of biodiversity lossReduce erosion and/or sediment deliveryCreate aquatic habitat

EGU23 - General Assembly, Section: BG 3.8, PICO 3b.2, Abstract: EGU23-9476

Water retention surfaces and willingness

	Pákozd	Sukoró	Nadap
Public streets, main roads and sidewalks (surface in m ²)	152.753 m ²	131.368 m ²	36.074 m ²
Private sidewalks and parking lots (surface in m ²)	43.451 m ²	23.112 m ²	9.875 m ²
Houses' and public buildings' roofs (surface in m ²)	186.219 m ²	99.049 m ²	42.323 m ²
Vineyard, backyard farming, small gardens (surface in m ²)	18.000 m ²	8.000 m ²	22.000 m ²

Total retainable rainwater annually: ~ $3.8 \times 10^5 \text{ m}^3$

$$ERV = \sum_{i=1}^{4} A_i \cdot f_i \cdot p_{est} \cdot ER_i \cdot RET$$

 $REP = \sum_{i=1}^{4} IW_i \cdot FTO_i$

possible rainwater volume (ERV)
runoff factors (f_i)
surface areas (A_i)
estimated precipitation (p_{est})
estimated error (ER_i)
retention proportion (REP)
implementation willingness (IW)
financial technical opportunity (FTO)

wetland, ecological/biodiversity development other development

1				
	Time of survey	Questions in the	Request method and	Approached
		survey	repetition	settlements
	February 2022	8 explanatory & 12	First invitation and	Within catchment 11
		multiple-choice	request sent by e-mail.	settlements were
		questions (true-false or	A repeated e-mail request	approached, that are
		max. 5 pre-given	was sent after 2 weeks.	boundary or physically
		answers)		very close to the lake.
	September-	16 explanatory & 43	First invitation and	Within catchment 14
	October 2022	multiple-choice	request sent by e-mail.	settlements were
		questions (true-false or	A repeated request during	approached only the
		with given answers)	a personal inquiry.	northern "karts" region
				was left out.

EGU23 - General Assembly, Section: BG 3.8, PICO 3b.2, Abstract: EGU23-9476

Landscape change, land use possibilities

EGU23 - General Assembly, Section: BG 3.8, PICO 3b.2, Abstract: EGU23-9476

Area transformation: orchard and vineyard

Crop water use

 $ET_c = K_c \times ET_o$

K_c - crop coefficient ET_o - reference crop evaporation (grass in mm) Kc = 1 (reference for grass) Kc < 1 (plant's water demand higher than grass's)

$$\begin{split} & K_c(grape) = 0.5\text{-}0.8 \ (650\text{-}850mm - mostly May\text{-}Sept) \\ & K_c(sunflower) = 0.35 \ (late stage) - 1.0 \ (early stage) \\ & K_c(cherries, pears) = 0.75 \ (late stage) - 1.0 \ (early stage) \\ & K_c(apricot, peaches) = 0.65 \ (late stage) - 0.9 \ (early stage) \end{split}$$

Area transformation: from pastures and scrubs to orchard and vineyard (problem: pastures dry up summertime)

EGU23 - General Assembly, Section: BG 3.8, PICO 3b.2, Abstract: EGU23-9476

Costs – benefits – opportunity costs (2,8)

<u>Example</u>: new vineyard planting & building a new retention pond

$$\mathbf{\pi} = \frac{Y_f \cdot \sum_{1}^{n} R \cdot \frac{(1+p)^n}{(1+i)^n} - I + \sum_{1}^{n} M \cdot \frac{(1+g)^n}{(1+i)^n} - C}{n+1}$$

☐ - annual average discounted value addition (direct GDP effect)

 Y_f – yield factor

(0% in 1^{st} year, 100% from 6^{th} year)

R – revenue per hectare (vineyard: 5,526; pear: 10,385 USD)

I – investment cost (11,782 USD / $350m^3 - 1$ pond)

C – complete restoration (5,000 USD)

p - price increase ("inflation", 3,50%)

i – interest rate (3,90%)

g – economic growth rate (4,00%)

n – time interval (50 years)

as of Hungary1. GDP (Hungary total, average hectare)100%2. New vineyard planting with pond38,9%3. New pear planting with pond65,6%4. New pond for existing vineyard20,7%

EGU23 - General Assembly, Section: BG 3.8, PICO 3b.2, Abstract: EGU23-9476

Contact information

¹Attila Kálmán, PhD student, <u>kalman.attila@sze.hu</u>, Széchenyi István University, Győr, Hungary
 ¹Dr. Katalin Bene PhD, associate professor, <u>benekati@sze.hu</u>, Széchenyi István University, Győr, Hungary

National Laboratory for Water Science and Water Security, Széchenyi István University of Győr, Department of Transport Infrastructure and Water Resources Engineering, Egyetem tér 1, Győr 9026, Hungary

Acknowledgement

The research presented in this PICO presentation was carried out within the framework of the Széchenyi Plan Plus program with the support of the RRF 2.3.1 21 2022 00008 project.

EGU23 - General Assembly, Section: BG 3.8, PICO 3b.2, Abstract: EGU23-9476